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Outline:

1. Motivations

2. methods: Euclidean (CDL, BT),

and Hamiltonian (FMP)

3. Holographic interpretation

Motivations

1. populating the String Theory Landscape

2. promising for understanding QG (analogy with BHs)

3. testing the consistency of the 3 formalisms

4. similar unitarity issues as in the information loss paradox

5. analytic calculation in 2D.



1) CDL2 from JT-gravity using Almheiri-Polchinski
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2) BT: brane nucleation (D=d+1), fits well with the Landscape: no V

In 2D : 1. Membrane ≡ particle/anti-particle pair.

2. no magnetic field.

Effectively Λo,i
def .
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1

2
k E 2

o,i

Eo
Ei Eo
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Path-integral representation of the transition amplitude.
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Some preliminary entropic arguments

Γt→f

Γf→t
= exp

[
−3

8
M4

P

(
1

Vt
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)]
[Lee-Weinberg, 1987]

1. Not for Vt < 0 due to topology change.

2. ⇒ Γo→I

ΓI→o
= e

ηπ
2G

(
1

H2
o
− 1

H2
I

)
= eη(So−SI )

lim
Ho→0−−−→ 0, since Sbckgr → ∞

3. SSch→dS = ηπ
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2G

[
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Sch4 → dS4 [FGG]

If M < MD
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from vacuum fluctuations
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βD > 0βD > 0βS < 0βS > 0

a c b
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1. Avoid the initial singularity problem by quantum tunnelling, but,

2. the instanton is singular. A pseudo-manifold [motivating FMP]



3) The Hamiltonian formulation of VTs [FMP]

1. Lorentzian

2. in 2D using JT.

gµν =

(
−(N t)2 + (Nz )2 LNz
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=
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∫ ẑ+ε

ẑ−ε dz Hz = 0

−
∫ ẑ+ε
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ẑ−
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Main results
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BT as AdS2/CFT1 ⊂ AdS3/CFT2

2 types of Einstein -Maxwell dilaton gravity [Hartman, Strominger, 2008; Alhishahia, ,

2008] :

1. type-I S = 1
16πG

∫
dx2√−g

(
eφ(R+ 2

`2 ) + F 2
)

2. type-II S = 1
16πG

∫
dx2√−g eφ

(
(R+ 2

`2 ) + e2φF 2
)

Both admit an AdS2 solution dual to a CFT1, but only type-II can be

obtained by dimensional reduction of AdS3/CFT2 where c
def .
= 3R3

2G .

BT is a type-II theory.

New perspective:

a) looking for a possible entropic understanding of Btot or Stot going
beyond detailed balance using holography;

b) possible island interpretation.



Holographic interpretation: examples
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1. the newly-nucleated spacetime is a black hole in the background:
relative entropy

2. the spacetimes are extremal and the RG-flow is the CFT2 with c
BCFT2

3. lim
Λ±→0

Btot =∞ in agreement with the c-theorem.

4. φ2
− ≡ φ2

+ ⇒ Btot = 0 all the information is in the CFT2 (see next).
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after comapctification, it is consistent with wedge holography:
AdS2/CFT1 ⊂ AdS3/CFT2 just as BT:

B) B AdS2→AdS2
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Key point: T is uniquely determined by ε .



Relation to TT̄ ⇒ Transitions are local and the CFT2 lives at z = ε.
From FMP
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=
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The emergence of the island [equivalent to Van Raamsdonk et al.]

AdS2/CFT1 ⊂ AdS3/CFT2
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Sbrane = S (2)
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(
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CDL
BT
FMP

CDL
BT
FMP

CDL

CDL
BT
FMP FMP FMP

AdS2 dS2

AdS2

dS2

Mink2



Main results:

1. Agreement in between the 3 formalisms in most of the cases, thanks
to their holographic interpretation

2. The flat limit of 2D vacuum transitions requires a black hole

3. black holes play a similar role as TT̄ -deformations in a CFT2

4. the BH mass is related to εUV of a CFT2

5. the behaviour of the total action is similar to the difference of 2
generalised entropies [Maldacena et al.]

S
(A)dS→(A)dS

tot = 2πη

[
φh,+

G
− φh,−

G
+ S

(A)dS,T T̄

EE,−
− S

(A)dS,T T̄

EE,+

]
Future directions & Work in progress:

1. extension to SUGRA solutions

2. ...


