2D Vacuum transitions and their holographic interpretation

Veronica Pasquarella
DAMTP, HEP group
supervised by Professor Fernando Quevedo

Outline:

1. Motivations
2. methods: Euclidean (CDL, BT), and Hamiltonian (FMP)
3. Holographic interpretation

Motivations

1. populating the String Theory Landscape
2. promising for understanding QG (analogy with BHs)
3. testing the consistency of the 3 formalisms
4. similar unitarity issues as in the information loss paradox
5. analytic calculation in 2D.
1) CDL_{2} from JT-gravity using Almheiri-Polchinski

$$
\begin{aligned}
& S_{2 D}=\int d^{2} x \sqrt{-g}\left[\phi^{2} \mathcal{R}+\lambda\left(\phi^{\prime}\right)^{2}-U(\phi)\right] \\
& d s^{2}=e^{2 \omega}\left(d t^{2}+d z^{2}\right)=\rho^{2}\left(d r^{2}+r^{2} d \theta^{2}\right) V_{(\phi)} \\
& S_{E}=2 \pi \int_{0}^{\bar{r}} d r\left[2 \phi^{2}\left(r \omega^{\prime}\right)^{\prime}+r U_{o} e^{2 \omega}\right] \\
& \text { 1. the vacua }\left(\phi^{2}\right)^{\prime}=0, \partial_{\phi^{2}} U_{0} \stackrel{\text { def }}{=} \Lambda=\text { const. } \\
& \text { 2. the wall }\left(\phi^{2}\right)^{\prime} \neq 0, \Rightarrow B_{\text {wall }} \\
& \text { constraint: } \quad\left(\phi^{2}\right)^{\prime}=c_{1} r e^{2 \omega} \\
& \left.\Gamma \sim \exp \left(i S_{o}\right) \stackrel{\text { def. }}{=} \exp (-B) \quad B \stackrel{\text { def. }}{=} S_{E}\right|_{\text {inst }}-\left.S_{E}\right|_{b c k g r} \\
& \text { e.g. } \quad B_{t o t}^{\operatorname{AdS}_{2} \rightarrow \mathrm{AdS}_{2}}=4 \pi\left(\frac{\phi_{-}^{2}}{\phi_{+}^{2}}+2\right)\left(\phi_{-}^{2}-\phi_{+}^{2}\right)
\end{aligned}
$$

$B_{\text {tot }} \stackrel{\text { def. }}{=} B_{\text {in }}+B_{\text {wall }}$
2) $B T$: brane nucleation $(D=d+1)$, fits well with the Landscape: no V

In 2D : 1. Membrane \equiv particle/anti-particle pair.
2. no magnetic field.

$$
\text { Effectively } \quad \Lambda_{o, i} \stackrel{\text { def. }}{=} \lambda+\frac{1}{2} k E_{o, i}^{2}
$$

$$
\left.B_{\text {tot }}^{\text {type }-1}\right|_{\text {extr }}=\frac{4 \pi}{k} \ln \left|\frac{r_{i}}{r_{0}}\right|
$$

$$
\mathrm{r}_{o, i} \stackrel{\text { def. }}{=} \frac{2}{\Lambda_{o, l} \overline{\bar{\rho}}}\left[1-\sigma_{o, i} \sqrt{1-\Lambda_{o, l} \bar{\rho}^{2}}\right]
$$

$$
\sigma_{o, i} \stackrel{\text { def. }}{=} \operatorname{sgn}\left[\mathcal{E} e E_{o n} \mp \frac{1}{4} k m^{2}\right] \quad, \quad \bar{\rho} \stackrel{\text { def. }}{=} \frac{m}{\sqrt{\Lambda_{i} m^{2}+\left(\mathcal{E} e E_{o n}+\frac{1}{4} k m^{2}\right)^{2}}}
$$

Some preliminary entropic arguments

$$
\frac{\Gamma_{t \rightarrow f}}{\Gamma_{f \rightarrow t}}=\exp \left[-\frac{3}{8} M_{P}^{4}\left(\frac{1}{V_{t}}-\frac{1}{V_{f}}\right)\right]
$$

[Lee-Weinberg, 1987]

1. Not for $V_{t}<0$ due to topology change.
2. $\Rightarrow \frac{\Gamma_{0 \rightarrow 1}}{\Gamma_{l \rightarrow 0}}=e^{\frac{\eta \pi}{2 G}\left(\frac{1}{H_{0}^{2}}-\frac{1}{H_{l}^{2}}\right)}=e^{\eta\left(S_{o}-S_{l}\right)} \xrightarrow{\lim _{0} \rightarrow 0} 0$, since $S_{b c k g r} \rightarrow \infty$
3. $S_{\mathrm{Sch} \rightarrow \mathrm{dS}}=\frac{\eta \pi}{2 G}\left[S_{\text {bounce }}-S_{\text {bckg }}\right]=\frac{\eta \pi}{2 G}\left[S_{\text {bounce }}-4 G^{2} M^{2}\right]$

Sch $_{4} \rightarrow \mathrm{dS}_{4}$ [FGG]

If $M<M_{D}$
$\lim _{M_{s} \rightarrow 0} \Rightarrow$ brane nucleation
from vacuum fluctuations

1. Avoid the initial singularity problem by quantum tunnelling, but,
2. the instanton is singular. A pseudo-manifold [motivating FMP]
3) The Hamiltonian formulation of VTs [FMP]
1. Lorentzian
2. in 2 D using JT .
$g_{\mu \nu}=\left(\begin{array}{cc}-\left(N^{t}\right)^{2}+\left(N^{z}\right)^{2} & L N^{z} \\ L N^{z} & L^{2}\end{array}\right)$

$$
P(A \rightarrow B) \stackrel{\text { def. }}{=} \frac{\mid\left.\Psi(\text { nothing } \rightarrow A / B)\right|^{2}}{\mid\left.\Psi(\text { nothing } \rightarrow A)\right|^{2}}
$$

$$
\mathcal{L}_{2 D}=\sqrt{-g} \phi\left[\mathcal{R}-2 \Lambda_{+} \Theta(z-\hat{z})-2 \Lambda_{-} \Theta(\hat{z}-z)\right]+
$$

$$
-\delta(z-\hat{z}) \sigma \sqrt{\left(N^{t}\right)^{2}+L^{2}\left(N^{z}+\dot{\hat{z}}\right)^{2}}+
$$

$$
+\sqrt{-g}\left[\phi_{o} \mathcal{R}-\mathcal{B}_{+} \Theta(z-\hat{z})-\mathcal{B}_{-} \Theta(\hat{z}-z)\right]
$$

$$
=\mathcal{L}_{B T s}+\pi_{L} \dot{L}+\pi_{\phi} \dot{\phi}-N^{t} \mathcal{H}_{t}-N^{z} \mathcal{H}_{z}
$$

$\mathcal{H}_{z}=\left.0\right|_{z \neq \hat{z}} \Rightarrow \pi_{L}^{\prime}=\phi^{\prime} \frac{\pi_{\phi}}{L} \quad$ If $N^{t}=1, N^{z}=0, \sigma=\kappa \phi, \Phi_{b} \stackrel{\text { def. }}{=} \frac{\phi_{b}}{\sqrt{|\mathcal{C}|}}$

$$
\left\{\begin{array} { l }
{ - \int _ { \hat { z } - \epsilon } ^ { \hat { \hat { z } } + \epsilon } d z \mathcal { H } _ { z } = 0 } \\
{ - \int _ { \hat { z } - \epsilon } ^ { \hat { \hat { z } } + \epsilon } d z \mathcal { H } _ { t } = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
\left.\frac{\phi^{\prime}}{L}\right|_{\hat{z}_{-}} ^{\hat{z}_{+}}=-\frac{\sigma}{2} \\
\left.\pi_{L}\right|_{\hat{z}_{-}} ^{\hat{z}_{+}}=0
\end{array} \Rightarrow \dot{\Phi}_{b}^{2}+V_{\text {eff }}=-1\right.\right.
$$

$$
d s^{2}=\frac{\left(\phi \pm \frac{\mathcal{B}}{2 \Lambda_{ \pm}}\right)^{2}-4 a^{2}}{4 a^{2}}\left(-d t^{2}+\frac{4 a^{2}}{b^{2}} \frac{d \phi^{2}}{\left(\left(\phi \pm \frac{\mathcal{B}}{2 \Lambda_{ \pm}}\right)^{2}-4 a^{2}\right)^{2}}\right)
$$

Main results
$\left.S_{\text {tot }}^{\mathrm{AdS}_{2} \rightarrow \mathrm{AdS}_{2}}\right|_{\mathcal{B}=0}=\frac{\eta}{G}\left[\mu_{-} \ln \left|\frac{\mu_{-} A_{1}+1}{\mu_{-} A_{1}-1}\right|-\mu_{+} \ln \left|\frac{\mu_{+} A_{2}+1}{\mu_{+} A_{2}-1}\right|\right] \equiv S_{\text {brane }}$
$\left.S_{\text {tot }}^{\mathrm{dS}_{2} \rightarrow \mathrm{dS}_{2}}\right|_{\mathcal{B}=0}=\frac{2 \eta}{G} \pi\left(\mu_{+}-\mu_{-}\right)+S_{\text {brane }} \xrightarrow{\mu_{-} \rightarrow+\infty}+\infty$
$\left.S_{\text {tot }}^{\text {Mink }} \rightarrow(\mathrm{A}) \mathrm{d} S_{2}\right|_{\mathcal{B} \neq 0}=\frac{2 \eta}{G}\left[\phi_{f}-\phi_{h, 2}^{-}+\rho_{2}-\rho_{1}+\right.$
$\left.+L_{3}\left[\tan (h)\left(\frac{\rho_{2}}{L_{3}}\right) \ln \left|A_{2} \sin (h)\left(\frac{\rho_{2}}{L_{3}}\right)\right|-\tan (h)\left(\frac{\rho_{1}}{L_{3}}\right) \ln \left|A_{2} \sin (h)\left(\frac{\rho_{1}}{L_{3}}\right)\right|\right]\right]$
Notation: $\mu_{ \pm} \stackrel{\text { def. }}{=} \sqrt{-\frac{\mathcal{C}}{\Lambda_{ \pm}}} \quad, \quad A_{1,2} \stackrel{\text { def. }}{=} \frac{\Lambda_{+}-\Lambda_{-} \pm \frac{\kappa^{2}}{4}}{\kappa} \quad, \quad L_{3}^{2} \stackrel{\text { def. }}{=} \frac{\frac{B^{2}}{4 \Lambda_{-}}-\mathcal{C}}{\Lambda_{-}}$

$$
\left.\lim _{\Lambda \rightarrow 0} \phi_{h}\right|_{\mathcal{B} \neq 0} \stackrel{\text { def. }}{=} \phi_{f}=\text { const. }, y \stackrel{\text { def. }}{=} \tanh \left(\frac{\rho}{L_{3}}\right) \stackrel{\text { def. }}{=} L_{3}^{-1}\left(\frac{\mathcal{B}}{2 \Lambda_{-}}+\phi\right)
$$

BT as $\mathrm{AdS}_{2} / \mathrm{CFT}_{1} \subset \mathrm{AdS}_{3} / \mathrm{CFT}_{2}$

2 types of Einstein -Maxwell dilaton gravity [Hartman, Strominger, 2008; Alhishahia, , 2008] :

1. type-I $S=\frac{1}{16 \pi G} \int d x^{2} \sqrt{-g}\left(e^{\phi}\left(\mathcal{R}+\frac{2}{\ell^{2}}\right)+F^{2}\right)$
2. type-II $S=\frac{1}{16 \pi G} \int d x^{2} \sqrt{-g} e^{\phi}\left(\left(\mathcal{R}+\frac{2}{\ell^{2}}\right)+e^{2 \phi} F^{2}\right)$

Both admit an AdS_{2} solution dual to a CFT_{1}, but only type-II can be obtained by dimensional reduction of $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ where $c \stackrel{\text { def }}{=} \frac{3 R_{3}}{2 G}$.

BT is a type-II theory.
New perspective:
a) looking for a possible entropic understanding of $B_{t o t}$ or $S_{t o t}$ going beyond detailed balance using holography;
b) possible island interpretation.

Holographic interpretation: examples

$$
\begin{gathered}
\text { A) } \begin{aligned}
& B_{\text {tot }} \mathrm{AdS}_{2} \rightarrow \mathrm{AdS}_{2}=4 \pi\left(\frac{\phi_{-}^{2}}{\phi_{+}^{2}}+2\right)\left(\phi_{-}^{2}-\phi_{+}^{2}\right)= \\
& \stackrel{\text { def. }}{=} 4 \pi S_{ \pm}^{2}=4 \pi S_{+} S_{-}= \\
&=4 \pi c_{\text {hol }}^{\text {CFT }}{ }^{2} M_{B H} \\
& S_{ \pm} \text {generalising } S_{\text {Cardy }}=2 \pi \sqrt{\frac{c}{6}\left(\Delta-\frac{c}{24}\right)} \\
& C_{\text {hol }}^{C F T_{2}}=\frac{\partial\left(S_{+} S_{-}\right)}{\partial \mathcal{Q}}=\left(\frac{\phi_{-}^{2}}{\phi_{+}^{2}}+2\right) \phi_{+}^{2} \quad, \quad M_{B H}=\frac{\phi_{-}^{2}}{\phi_{+}^{2}}-1
\end{aligned} .
\end{gathered}
$$

1. the newly-nucleated spacetime is a black hole in the background: relative entropy
2. the spacetimes are extremal and the RG-flow is the CFT_{2} with $c_{\mathrm{BCFT}_{2}}$
3. $\lim _{\Lambda_{ \pm} \rightarrow 0} B_{\text {tot }}=\infty$ in agreement with the c-theorem.
4. $\phi_{-}^{2} \equiv \phi_{+}^{2} \Rightarrow B_{\text {tot }}=0$ all the information is in the CFT_{2} (see next).

after comapctification, it is consistent with wedge holography: $\mathrm{AdS}_{2} / \mathrm{CFT}_{1} \subset \mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ just as BT:

$$
\text { B) }\left.B_{\text {type }-1}^{\mathrm{AdS}_{2} \rightarrow \mathrm{AdS}_{2}}\right|_{\text {extr }}=2 \pi\left[S_{\text {bdy }}^{-}-S_{\text {bdy }}^{+}-\ln \left|\frac{\Lambda_{+}}{\Lambda_{-}}\right|\right]=2 \pi S_{\text {ICFT }}
$$

with $\quad S_{b d y} \stackrel{\text { def. }}{=} \ln \left|\frac{1+T}{1-T}\right| \quad, \quad T \stackrel{\text { def. }}{=} \sqrt{1-\Lambda_{o, I} \bar{\rho}^{2}}$
Key point: T is uniquely determined by ϵ.

Relation to $T \bar{T} \Rightarrow$ Transitions are local and the CFT_{2} lives at $z=\epsilon$. From FMP

$$
\begin{aligned}
& S_{\text {tot }}^{(\mathrm{A}) \mathrm{dS} \rightarrow(\mathrm{~A}) \mathrm{dS}}=2 \pi \eta\left[S_{T \bar{T}}^{-}-S_{T \bar{T}}^{+}\right]_{\text {univ. }}=-2 \pi \eta F_{\partial}=2 \pi \eta S_{I C F T} \\
& -F_{\partial} \stackrel{\text { def. }}{=} S_{\partial}(R)_{\text {univ. }} \stackrel{\text { def. }}{=} \lim _{\epsilon \rightarrow 0}\left[\ln \mathcal{Z}\left[H S_{R}^{D}\right]-\frac{1}{2} \ln \mathcal{Z}\left[S_{R}^{D}\right]\right] \\
& S_{T \bar{T}} \stackrel{\text { def. }}{=}\left(1-\frac{r}{2} \frac{\partial}{\partial r}\right) \ln \mathcal{Z}_{S^{2}}^{(A) d S, T \bar{T}}= \\
& =\left\{\begin{array}{l}
\pi \frac{c}{3} \sinh ^{-1}\left(\sqrt{\frac{12}{c \lambda}} r\right), \quad[\text { H.Verlinde et al.] } \\
\frac{c}{6}+\frac{c}{3} \ln \left|\sqrt{\frac{\lambda c}{12} \frac{1}{r}}\right|+\frac{c}{3} \tan ^{-1}\left(\frac{1}{\sqrt{\frac{\lambda c}{12 r^{2}}-1}}\right)+\text { cont., [Silverstein et al.] } \\
\text { with } \quad \mu \stackrel{\text { def. }}{=} \sqrt{\frac{\lambda c}{12}}, \quad \phi_{0} \stackrel{\text { def. }}{=} r, \lambda \stackrel{\text { def. }}{=} 2 \sqrt{-\frac{\mathcal{C}}{\Lambda}}
\end{array}\right.
\end{aligned}
$$

The emergence of the island [equivalent to Van Raamsdonk et al.]

$$
S_{\text {brane }}=\left.S_{E E}^{(2)}\right|_{\mathcal{B}=0}+\delta S_{E E}^{s}+\delta S_{E E}^{t}+\mathcal{O}\left(\mathcal{B}^{2}\right) \quad, \quad \phi_{2} \stackrel{\text { def. }}{=}-\frac{\mathcal{B}}{|\mathcal{C}|} \phi_{o}^{2}-\phi_{1}
$$

Phase transition beyond a certain value of \mathcal{B}.

$$
\begin{aligned}
& S_{b r a n e}=\eta\left(S_{E E,-}^{T \bar{T}} \pm S_{E E,+}^{T \bar{T}}\right) \\
& S_{E E}^{1,2}=\left.S_{E E}^{(2)}\right|_{\mathcal{B}=0} ^{1,2}+\left.\delta S_{E E}^{s}\right|^{1,2} \\
& \sim-\frac{8 c_{-}}{3} \ln \left|\frac{1}{\epsilon} \sinh \left(\frac{2 \pi r_{-}}{\beta_{-}}\right)\right|+ \\
& -\left(1-\frac{\phi_{o}^{2}}{\mu_{-}^{2}}\right) \frac{\mathcal{B} c_{-}^{2}}{9 \Lambda_{-}} \operatorname{coth}^{2}\left(\frac{2 \pi r_{-}}{\beta_{-}}\right)+ \\
& +\frac{c_{-}}{3} \\
& \sinh ^{2}\left(\frac{2 \pi r_{-}}{\beta_{-}}\right)
\end{aligned}
$$

	$\begin{gathered} \mathrm{AdS}_{2} \\ \uparrow \end{gathered}$	dS_{2}	Mink $_{2}$ \uparrow
$\mathrm{AdS}_{2} \longrightarrow$	CDL BT FMP	$\begin{aligned} & \text { CDL } \\ & \text { FMP } \end{aligned}$	$\begin{aligned} & \text { CDL } \\ & \text { FMP } \end{aligned}$
$\mathrm{dS}_{2} \longrightarrow$	$\begin{aligned} & \text { CDL } \\ & \text { BT } \\ & \text { FMP } \end{aligned}$	$\begin{aligned} & \text { CDL } \\ & \text { BT } \\ & \text { FMP } \end{aligned}$	$\begin{aligned} & \text { CDL } \\ & \text { BT } \\ & \text { FMP } \end{aligned}$
Mink ${ }_{2} \longrightarrow$	$\begin{aligned} & \text { CDL } \\ & \text { BT } \\ & \text { FMP } \end{aligned}$	$\begin{aligned} & \text { CDL } \\ & \text { FMP } \end{aligned}$	

Main results:

1. Agreement in between the 3 formalisms in most of the cases, thanks to their holographic interpretation
2. The flat limit of 2 D vacuum transitions requires a black hole
3. black holes play a similar role as $T \bar{T}$-deformations in a CFT_{2}
4. the BH mass is related to $\epsilon_{U V}$ of a CFT_{2}
5. the behaviour of the total action is similar to the difference of 2 generalised entropies [Maldacena et al.]

$$
S_{t o t}^{(A) d S \rightarrow(A) d S}=2 \pi \eta\left[\frac{\phi_{h,+}}{G}-\frac{\phi_{h,-}}{G}+S_{E E,-}^{(A) d S, T \bar{T}}-S_{E E,+}^{(A) d s, T \bar{T}}\right]
$$

Future directions \& Work in progress:

1. extension to SUGRA solutions
2. ...
